Frequency Theorem for discrete time stochastic system with multiplicative noise

نویسندگان

  • Peter Situmbeko Nalitolela
  • Nikolai Dokuchaev
چکیده

In this paper we consider the problem of minimizing a quadratic functional for a discretetime linear stochastic system with multiplicative noise, on a standard probability space, in infinite time horizon. We show that the necessary and sufficient conditions for the existence of the optimal control can be formulated as matrix inequalities in frequency domain. Furthermore, we show that if the optimal control exists, then certain Lyapunov equations must have a solution. The optimal control is obtained by solving a deterministic linear-quadratic optimal control problem whose functional depends on the solution to the Lyapunov equations. Moreover, we show that under certain conditions, solvability of the Lyapunov equations is guaranteed. We also show that, if the frequency inequalities are strict, then the solution is unique up to equivalence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling

This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Homogenization for Deterministic Maps and Multiplicative Noise

A recent paper of Melbourne & Stuart, A note on diffusion limits of chaotic skew product flows, Nonlinearity 24 (2011) 1361–1367, gives a rigorous proof of convergence of a fast-slow deterministic system to a stochastic differential equation with additive noise. In contrast to other approaches, the assumptions on the fast flow are very mild. In this paper, we extend this result from continuous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011